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Self-avoiding surfaces with knotted boundaries 
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Department of Chemistry, University of Toronto, Toronto, Ontario M5S l A l ,  Canada 

Received 19 January 1990 

Abstract. We consider orientable self-avoiding surfaces, with genus 9, embedded in 
the hypercubic lattice. We consider a surface which has a boundary component and 
non-zero genus, and devise a construction which will reduce the genus of the surface. 
This result enables us to study embeddings of surfaces in the three-dimensional lat- 
tice, where a surface of genus g may have a boundary component which is a knot of 
genus 9' 5 9. We prove that the growth constants of these surfaces are independent 
of the knot type of the boundary component, and we derive inequalities between the 
associated critical exponents. 

1. Introduction 

There is an extensive literature on the properties of self-avoiding surfaces (Durhuus 
et  a1 1983,1985, Frohlich 1980, Glaus 1986,1988, Glaus and Einstein 1987). We pre- 
viously obtained (Janse van Rensburg and Whittington 1989, hereafter referred to as 
'I,) some rigorous inequalities between the numbers of embeddings of surfaces with 
a fixed number of boundary components in the lattice Zd using the theory of sub- 
additive functions (Hille 1948) as developed by Hammersley (1962) and Wilker and 
Whittington (1979). The results in I and in this paper are one possible generalisa- 
tion of polyominoes (Eden 1961, Read 1962, Klarner 1967, Klarner and Rivest 1973) 
to higher dimensions, where interesting topological properties must be taken into ac- 
count. 

Eguchi and Kawai (1982) considered the number of embeddings of a certain class 
of surfaces in Zd in relation to large-N U(N) gauge theory. They argue that the 
growth constant of the number of embeddings of these surfaces with fixed genus, and 
a boundary fixed in space, is independent of its genus. In this paper we consider 
a similar problem for the numbers of embeddings of self-avoiding surfaces with fixed 
genus and one boundary component: we prove that the growth constant is independent 
of the genus. 

We start by recalling the results in I. If s,(h) is the number of self-avoiding surfaces 
with h boundary components and n plaquettes, then we proved in I that 

n-oo lim s,(h)'/" = p h  (1.1) 
exists for h 2 0 in d 2 3 dimensions and for h 2 1 in d = 2 dimensions. Furthermore, 
if h 2 1, then P h  is independent of h. We defined a critical exponent d,, by assuming 
that s,(h) - Chn-$h/3c, and proved that 
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and 

These results are reminiscent of results obtained for the c model in lattice animals 
(Soteros and Whittington 1988, Madras et a1 1989). We also conjectured that qih = 
q51 + 1 - h, reflecting a similar result in lattice animals. This model of surfaces behaves 
similarly to  lattice animals, with c, the cyclomatic index of the animals, replaced by 
h,  the number of boundary components of the surfaces. In this paper, we consider the 
situation where h is replaced by g (the genus of the self-avoiding surface), and show 
that self-avoiding surfaces with one boundary component and genus g behave rather 
like lattice animals with the cyclomatic index replaced by the genus. 

The incidence of knots in lattice polygons and the enumeration of knots in S3 by 
crossings have also received much attention in the literature (Michels and Wiegel 1986, 
Sumners 1987, Ernst and Sumners 1987, Sumners and Whittington 1988, Pippenger 
1989). As yet, there is no rigorous proof that a lattice polygon of a fixed knot-type has 
a growth constant independent of the knot type, although this is believed to  be true. 
In three dimensions there is the possibility that a boundary component of a surface 
could be a knot, depending on the embedding of the surface (think for example of the 
Seifert surface of a knot). In figure 1 we have two embeddings of a torus with one 
boundary component. In figure l (a )  it has the unknot as boundary, and in figure l ( b )  
the trefoil. In general, an embedding of a torus with g handles can have any knot with 
genus less or equal to  g as a boundary component. We shall show that once punctured 
surfaces have a growth constant independent of the knot type of the boundary. 

i o 1  ( b )  

Figure 1. Two embeddings of the I-torus in R 3 .  (a) has the unknot as boundary 
and ( b )  has the trefoil knot as boundary. 

Let Zd be the d-dimensional hypercubic lattice where d 2 3. A plaquette is the 
interior and boundary of a unit square whose vertices are in Zd.  Two plaquettes 
are joined if they share a common edge, and two plaquettes are connected if they 
are elements in a sequence of plaquettes such that neighbouring pairs are joined. A 
surface is a collection of connected plaquettes. We call a vertex on a surface common 
if the plaquettes incident on it form a connected set. A surface is self-avoiding if every 
edge on the surface is incident on at most two plaquettes, and if all the vertices in 
the surface are common. In the rest of this paper we shall mean self-avoiding surface 
whenever we say surface.  Edges incident on only one plaquette form the boundary of 
the surface, which consists in general of several disjoint components (each of which is 
a polygon in zd) .  

This paper is organised in the following way. In section 2 we consider Sn(h,g), 
the set of orientable surfaces with h boundary components and genus g ,  consisting of 
n plaquettes in Z d .  Let the cardinality of Sn(h,g) be s,(h,g). We briefly consider 
concatenation of these surfaces, and then focus our attention on surfaces in the set 
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,S,(l,g), where there is only one boundary component. We prove that it is possible 
to reduce the genus of the surface by removing a strip of plaquettes from it. This 
construction immediately implies the existence of the limit 

where P( 1 ,  g )  is independent of g for all g 1 0. Assuming that there exist constants 
Cg and exponents # ( l , g )  such that s , ( l , g )  - Cgn-$( lJ)P( l ,g )R,  we then derive the 
following relation among the exponents q5( 1 , g ) :  

which is reminiscent of equation ( 1 . 3 ) .  
In section 3 we shift our attention to three dimensions. We consider the set 

C,(Tg,g’) of all orientable surfaces embedded in Z3 consisting of n plaquettes, with 
genus g’ ,  and having a single boundary component which is a knot T,, with genus 
g 5 9’. Let the cardinality of C,(T,,g’) be s,(T,,g’). We apply the construction in 
section 2 to this set and prove that the limit 

exists, and is independent of Tg and 9‘. Assuming that there exist constants Cgl(T,) 
and exponents q5(Tg,g’) such that s,(Tg,g’) - Cg~(T,)n-~(T~ig’)P(Tglg‘)n, we can 
derive some relations among the q5(Tg,g’). In particular, if we define 4(T,) = 4(T,,g) 
(for surfaces with genus equal to the genus of the knotted boundary), then 

where 0 is the unknot, and Tg is any (prime or compound) knot. Relating $(T,) and 
#(Ti,) to each other is more difficult. 

Let T be a knot which meets a plane E in ‘R3 in exactly two points P and Q. The 
arc of T from P to Q can be closed by an arc in E to obtain a knot Tl. The other arc 
(from Q to P )  is closed in a similar way to get a knot T,. The knot T is called the 
product of Tl and T,, and we denote it by T1#T,. T is called a compound knot with 
factors TI and T2 if neither TI nor T, are the unknot (Burde and Zieschang 1985). 
Suppose that Til is a compound knot containing the knot Tg (i.e., there is a knot TiL 
such that Ti, = Tg#Ti:, and g’ = g + 9”). Then 

We are not able to say more than this. For example, we would like to relate +(T,) 
and q5(Til) for any knots (prime or compound). Moreover, if g = g’ (so that the 
knots are different, but have the same genus), what is the relation then? So far, our 
constructions do not provide any clues. 

We conclude the paper with a few remarks in section 4 .  We discuss several prob- 
lems closely related to this paper and consider several unsolved problems in this area. 
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2. Surfaces in zd 

Let S,(h, g) be the set of orientable surfaces consisting of n plaquettes, with h bound- 
ary components and genus g, in Zd, d 2 3.  Let the cardinality of S,(h,g) be s,(h,g). 
The concatenation of surfaces and the stripping of plaquettes between different bound- 
ary components were considered in detail in I. Therefore we state the following results 
without proof. 

Lemma 2.1. Let d 2 3. Then s , (h ,g)  obeys the following inequalities. 
(i) s n ( h ,  9) I sn+4(h,  
(ii) s , (h ,g)  5 sntC(h,g + 1) where C is a positive constant. 
(iii) sn(h l ,g l ) sm(h , ,  9,) 5 ~ ~ + . , , . , + ~ ( h ~ + h , , g ~ + g , )  where A is a positive constant. 
(iv) s , (h ,g)  5 n(r21- l ) s n t i n ( h - l , g )  where in is an integer in the interval [0,3]. 

We shall use these results widely in this paper. Note that lemma 2.1 is not only 
applicable to the cardinality of S,(h ,g) ,  but also to other sets of surfaces, providing 
that we fix the number of boundary components. If we sum over the number of bound- 
ary components, then lemma 2.1(i), (ii), and (iii) are still true, with the argument h 
summed over. 

Let U E Sn(h, 9). The rank p of the first homology group E ,  of U (the first Betti 
number) is given by e.g. (Kaufman 1983) 

If h = 1 then p = 29. (If the surface has only one boundary component, then the first 
homology group is free Abelian of rank 2g.) We shall now design a construction which 
will reduce the rank of 1-1, of U for h = 1, giving us an inequality between s n ( l ,  g) and 
s n ( l i g  - 1) .  

Lemma 2.2. Let d 2 3 and U E S , ( l , g )  where g 2 1 .  Then the genus of U can be 
reduced by 1 by removing at most [n/21 or adding at  most (g - l)C (where C is a 
fixed, positive integer, independent of n) plaquettes to U ,  creating a new boundary 
component in the process. Moreover, we find that 

where (g - 1)C 

Proof. Let U E S,(l ,g).  Every orientable 2-manifold with one boundary component 
is homeomorphic to a torus with g handles and with an open disc removed. Choose a 
base point b , ,  and a second point b,,  on the boundary of U .  Let { p i } i E r  be the set of 
all l-cycles on U ,  labelled by the (infinite) index set I with the following properties. 

j, I (g - l)C + 3 and (g - l ) C  + 3 I in I (g - 1)C + 6. 

(1) None of the pi are null-homologous. 
(2) Each pi contains the points b ,  and b,, where the segment b, -+ b,  runs on the 

boundary of U .  
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(3) If we consider each pi to consist of the segments b ,  -.* b,  and b, + b , ,  then 
b ,  -.* 6, passes through the midpoints of each plaquette that it visits and passes from 
one plaquette to the next only through common edges. 

This setup is illustrated schematically in figure 2 for a punctured torus. The broken 
lines represent two l-cycles which have the properties (1)-(3) above. Let d(p i ) ,  the 
length of the l-cycle p i ,  be the number of midpoints of plaquettea that the segment 
b ,  -+ b ,  visits on U. Vary i E I, and b1 and b ,  on the boundary of U to find that 
l-cycle with the properties above such that 

Thus, pmin is that l-cycle on U, starting on the boundary and terminating there, which 
visits the least number of plaquettes and is not null-homologous. 

Figure 2. An orientable 2-manifold with one boundary component and genus 1.  
Two 1-cydes with the properties in lemma 2.2 are indicated. Each cycle consists of 
two segments, the firet segment runs from bl to b2 (indicated by the broken lines), 
and the second is from b2 to bl and runs along the boundary component of the 
Sur fsce .  

Delete every plaquette on U whose midpoint is visited by pmin, transforming U into 
d. Suppose that we delete j plaquettes in this way. Since b1 and b ,  are both on the 
boundary of U, and pmin is not null-homologous, we do not disconnect U, but we ‘cut’ 
through a ‘handle’ of the torus in figure 2, reducing the rank of the first homology group 
by at  least 1. An easy application of the Jordan-Brouwer curve theorem (Greenberg 
and Harper 1981) shows that we now have two boundary components (U is orientable). 
Hence, by equation (2.1) the genus of d is g‘ 5 g - 1. This inequality may be strict, 
as we show in figure 3. 

To see that 1 5 j I [n/21 , suppose that j > [n/21. By the choice of pmin, j is the 
minimum number of plaquettes that we must remove to reduce the genus of U by a t  
least 1. Let this set of plaquettes be L. Since Zd has girth 4, there is at  least one strip 
of plaquettes, L’, adjacent to L, which we can remove instead to reduce the genus, 
containing at  least j plaquettes. Therefore, L and L’ have at  least 2 j  > n plaquettes. 
This is a contradiction, so j 6 [n/21. This deletion of plaquettes is therefore a map 

A : U -U’ E Sn-j(2,g’) 

where [n/21 2 j 2 1 and 0 5 g’ 5 (g - 1). To see that this map is at  most n to 
1 we argue as follows. Suppose that we remove a strip L consisting of j plaquettes 
to transform U into d. The maximum number of edges on the boundary of d is 
2(n - j + 1). Every plaquette in L, except (perhaps) for the first and last, must have 
two edges on the boundary of U’. Therefore, the maximum number of ways that we 
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Figure 3. Removing a strip of plaquettes along A reduces the rank of the first 
homology group by one, resulting in figure 3(b). If we remove it along B instead, 
then it reduces the rank of the first homology group by three and we find figure 3 ( c ) .  

can put back the connected strip L into 6’ to get U is bounded above by 2 ( n - j +  1)/2. 
This is a maximum if j = 1. Therefore 

n-1  4-1 

j=(n-[?l) g’=O 

Apply lemma 2.l(ii) (g - 1 - 9’) times t o  sj(2,g‘). This gives 

We can apply lemma 2.l(i) to  each term in the sum above. Since we add plaquettes 
in groups of four, each term is bounded by snt1,(2,g - l ) ,  where z, is an integer in 
the interval [(g - 1)C, (g - l)C + 31 depending on (j + (g - l)C - g’C) mod 4. Let yn 
be the integer in the interval [(g - l)C, (g - l)C + 31 such that  

Then each term above is bounded by sntY, (2, g - 1). We evaluate the sums t o  find 

n 
s n ( 1 i g )  I gn(rT1 - ‘)sn+yn(2,g - 1) 

where (g - 1)C 5 yn 5 (g - l)C + 3. Lastly, apply lemma 2.l(iv) to  this result. 

We are now in the position to consider equation (1.4). In I we proved that  a 
surface with h boundary components has properties very similar to  a lattice animal 
with cyclomatic index h .  We consider a different situation here: a surface with a 
single boundary component and genus g. In theorem 2.3 we see that  the ‘handles’ on 
the surface are like cycles on the animal-the growth constants are independent of 
the genus. In addition to  this, if we assume the existence of a critical exponent then 
we can derive inequalities relating the exponents which are very similar to  existing 
relations for lattice animals. 
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Theorem 2.3. Let d 2 3. Then: 
(i) there exists a positive number @ ( l , O ) ,  dependent only on d ,  such that 

(ii) and there exist positive numbers p( 1, g) such that  

and where p ( l , g )  = p(1,O) Vg. 
(iii) Suppose that for every g 3 0 there exists a constant Cg such that 

s, ( 1, g ) - cg n- 4(’J)p( 1, g), . 

Then the exponents q5( 1, g) are related to  each other via 

Proof. (i) Janse van Rensburg and Whittington (1989). 
(ii) By lemma S.l(iii) and lemma 2.2: 

sn-m(l ig  - l)sm-x(O, 1) I s n ( l , g )  I O(gn4)sn+ i , ( l , g -  1) 

where m is chosen such that s ~ - ~ ( O ,  1) > 0 and (g - l)C + 3 I in I (g - l)C + 6. 
Take the 1 /n  power and let n go to  infinity. The existence of the limit then follows 
from an inductive argument on (i) above. 

(iii) Apply lemma 2.2 g times to  the last inequality above, substitute the assump- 
tion, divide by p( l ,O)“ ,  take logs, divide by logn and let n - ca. This gives the 
string of inequalities. 

3. Surfaces with knotted boundary components 

In this section we restrict our attention to  three dimensions, and consider surfaces 
with a single boundary component which is a (prime or compound) knot of genus 
g. Let the set of orientable surfaces with genus g’ consisting of n plaquettes with a 
boundary component being the knot Tg (with genus g) be Cn(Tg,g’), where g‘ 2 g. 
Let the cardinality of C,(T,, 9’) be s,(Tg,g’). We now prove the existence of the limit 
in equation (1.5). 

Theorem 3.1. Let d = 3.  Then there exists a positive number p(Tg,g’) such that  

lim s,(Tg,g’)’’n = P(Tg,g’) 
n-+w 

and p(T,,g’) = p(0,O) where 8 is the unknot. 

Proof. Let sn(Tg,T;, ,g”) be the number of surfaces with genus g” consisting of n 
plaquettes and having two boundary components of knot types Tg and Ti, (where 
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g + g‘ 5 9”). Then the result follows from lemma P.l(iii) and (iv) and lemma 2.2. We 
find 

~ n - m ( @ ,  O)sm-A(Tg, g’) I s n ( T g ,  0,gO 

- <O(n2)sn+i,, (Tg , 9’) 

50(n~9‘+~)s ,+, , ,  (0,o) 

where m is fixed such that S ~ - ~ ( T ~ ,  9’) > 0 and where 0 I in I 3 and (9’ - 1)(3 + 
g’C/2) 5 I C ,  5 (9’ - 1)(6 + g’C/2). Take the 1/n power and let n go to  infinity. The  
existence of the limit follows by induction on theorem 2.3(i). 

Theorem 3.1 implies that  s,(Tg,g’) = p(Tg,g‘)”to(”). As in theorem 2.3, suppose 
that  there exist constants Cg,(Tg) and exponents q5(Tg,g‘) such that 

s, (T, , g / )  - cgl (T, )n-@(Tg’g‘)p(Tg, (3.1) 

where q5(Tg,g’) is an exponent depending on the genus and the knot type of the 
boundary. If we are interested in the relations between q5(T ,g’ - 1) and q5(Tg,g’), 

inequalities 
where g’ - 1 1 g, then lemma 2.l(ii) and lemma 2.2 applied g ? times give the series of 

s,-c(Tg,g’ - 1) I sn(Tg,g’) I 0(n4’ )sn+i, ( 0 , O )  (3.2) 

where 0 is the unknot, (9’ - 1)(3 + g’C/2) 5 in 5 (9’ - 1)(6 + g’C/2), and where C is 
the constant in lemma 2.1(ii). Hence 

This result does not relate the exponents of surfaces with different knot types as 
boundary components to  each other. Consider the exponent q5(Tg) = q5(Tg, 9). Lemma 
2.l(iii) and (iv) and lemma 2.2 imply that 

(3.4) 

where m is fixed such that  S ~ - ~ ( T , ,  g) > 0, and 0 5 in 
j ,  5 (g - 1)(6 + gC/2). Substituting (3.1), we find that 

3 and (g - 1)(3 + gC/2) 5 

d(0) + 2 2 dVg) 2 4(0) - 49. (3.5) 

We can also relate d(Tg) and d(T;,) if T;, is a compound knot containing Tg 
(prime or compound). Then there exists a knot Ti;) such that Ti, = Tg#Ti!,. By 
lemma 2.l(iii) and (iv) we have 
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where m is fixed such that s , - A ( T ~ $ , , g ” )  > 0. Substitute (3.1), then we find 

4(Tg) + 2 2 4v;j ). (3.7) 

We state these results together in the following theorem. 

Theorem 9.2. Let d = 3. Suppose that there exists a constant C,,(Tg) and an exponent 
+(Tg,g’) such that equation (3.1) is true. Then the exponents obey the following 
relations. 

(i) Let Tg be any knot and suppose that g’ > 0. Then 

where 0 is the unknot. 
(ii) Suppose that Tg is any knot. Then 

where 4(Tg) = 4(Tg,g)* 
(iii) Suppose that there exists a knot TiL such that Ti, = Tg#TL:, and g’ = g+g‘’. 

Then 

4. Discussion 

(1) We considered the existence of the limit in (1.4) in theorem 2.3. It is now an easy 
task to combine the results in lemmas 2.l(iii) and (iv) and lemma 2.2 to prove the 
existence of the limit 

and to show that P(h,  g) = P(  1,O) for all h 2 1 and g 2 0. Similarly, we can use the 
inequalities to consider relations among critical exponents in exactly the same fashion 
as in theorem 2.3(iii). We find that 

wherev=Oor  1 a n d p = O o r  1. 
(2) In theorem 3.2 we state some relations between the exponents of a surface 

with boundary component of a fixed knot type. This list is woefully incomplete. In 
particular, we have no result which indicates a relation between the exponents of two 
prime knots with different genus. Moreover, we would like to be able to relate the 
exponents of every given pair of knots. There is an obvious question here: if two 
knots have the same genus, will they have the same exponent, or will the exponent 
be determined by some other knot invariant? This is an interesting question, and 
deserves further investigation. 
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(3) We had some success in studying the growth constants of these surfaces, but 
some questions remain unanswered. In particular, if we define s,(l) = E,"=, s , ( l ,g) ,  
then i t  is easily seen that the limit limn-m s,(l)'/" = P(1) exists and that  P(1) 2 
P(1,O). Is this inequality strict? If it is, then we know that  exponentially few surfaces 
have fixed genus. In 1985 J Frohlich (1985) posed an interesting question closely 
related to  this point. Is there a regime where an interface (between two phases in 
for example the Ising model) has non-zero genus with probability 1 in the scaling 
limit? Consider s,(O,g), the number of closed surfaces with genus g. Let s,(O) = 
Cg,Osn(O,g).  Can we prove that limndm s,(O,g)'/" = P(0,g) exists for all g? It 
obviously exists for g = 0. If P(0,O) < maxgP(O,g), or if P(0,O) < P(O), where 
limn-00 s,(O)'/" = P(O),  then there is a regime where the interface has non-zero 
genus in the scaling limit. 

(4) Closely related to the situation in (3) is the following. Let 7'"' = 
(T#T#. . . #T) be a compound knot consisting of m copies of the knot T. Let 
s,(T) = C ~ = O ~ , ( T m , m g ) ,  if we assume that T has genus g. By lemmas 2.l(iii) 
and (iv) the limit lirn,,+m s,(T)'/" = T~ exists. Similarly, let s,(C) be the number of 
embeddings of surfaces with boundary any compound knot. Then by lemma 2.l(iii) 
and (iv), limn+m s,(C)'/" = rc exists. If s,(P) is the number ofembeddings with any 
prime knot as boundary, then our methods fail to  prove that lirn,,+m s,(P)'/" = rP 
exists. Suppose that it does exist. How are rT, rc and T~ related to  P(0,O) (theorem 
3.1)? If T~ ( T ~  and T ~ )  > @(0,0), then exponentially few embeddings of surfaces 
have the unknot as boundary as compared to  s,(T) (s,(C) and s , (P)) .  Hence, ex- 
ponentially few surfaces will have the unknot as boundary, as compared to  all the 
embeddings in Z3. This is similar to  the fact that  exponentially few polygons in Z3 
are the unknot (Sumners and Whittington 1988). 

(5) It is easy to perform a similar study with surfaces with two boundary com- 
ponents and where we consider the linking of the boundary components. By using 
lemma 2.l(iv) i t  is easy to  prove that growth constants exist and we can postulate 
the existence of a critical exponent and derive inequalities relating these exponents for 
some cases. As in the case of knots, this list will be incomplete, and more work will be 
necessary to  fill i t  out. Furthermore, given a surface with two boundary components, 
are the boundary components unlinked in only exponentially few cases? 

(6) We did not consider non-orientable surfaces in this paper. It is not difficult t o  
extend the results in this paper to  that case as well. 
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